1,006 research outputs found

    A state-level study of opioid use disorder treatment access and neonatal abstinence syndrome

    Get PDF
    Background Adult opioid use and neonatal abstinence syndrome (NAS) are growing public health problems in the United States (U.S.). Our objective was to determine how opioid use disorder treatment access impacts the relationship between adult opioid use and NAS. Methods We conducted a cross-sectional state-level ecologic study using 36 states with available Healthcare Cost and Utilization Project State Inpatient Databases in 2014. Opioid use disorder treatment access was determined by the: 1) proportion of people needing but not receiving substance use treatment, 2) density of buprenorphine-waivered physicians, and 3) proportion of individuals in outpatient treatment programs (OTPs). The incidence of NAS was defined as ICD-9 code 779.5 (drug withdrawal syndrome in newborn) from any discharge diagnosis field per 1000 live births in that state. Results Unmet need for substance use disorder treatment correlated with NAS (r = 0.54, 95% CI: 0.26–0.73). The correlation between adult illicit drug use/dependence and NAS was higher in states with a lower density of buprenorphine-waivered physicians and individuals in OTPs. Conclusions Measures of opioid use disorder treatment access dampened the correlation between illicit drug use/dependence and NAS. Future studies using community- or individual-level data may be better poised to answer the question of whether or not opioid use disorder treatment access improves NAS relative to adult opioid use

    Sensitivity of Mission Energy Consumption to Turboelectric Distributed Propulsion Design Assumptions on the N3-X Hybrid Wing Body Aircraft

    Get PDF
    In a previous study by the authors it was shown that the N3-X, a 300 passenger hybrid wing body (HWB) aircraft with a turboelectric distributed propulsion (TeDP) system, was able to meet the NASA Subsonic Fixed Wing (SFW) project goal for N+3 generation aircraft of at least a 60% reduction in total energy consumption as compared to the best in class current generation aircraft. This previous study combined technology assumptions that represented the highest anticipated values that could be matured to technology readiness level (TRL) 4-6 by 2030. This paper presents the results of a sensitivity analysis of the total mission energy consumption to reductions in each key technology assumption. Of the parameters examined, the mission total energy consumption was most sensitive to changes to total pressure loss in the propulsor inlet. The baseline inlet internal pressure loss is assumed to be an optimistic 0.5%. An inlet pressure loss of 3% increases the total energy consumption 9%. However changes to reduce inlet pressure loss can result in additional distortion to the fan which can reduce fan efficiency or vice versa. It is very important that the inlet and fan be analyzed and optimized as a single unit. The turboshaft hot section is assumed to be made of ceramic matrix composite (CMC) with a 3000 F maximum material temperature. Reducing the maximum material temperature to 2700 F increases the mission energy consumption by only 1.5%. Thus achieving a 3000 F temperature in CMCs is important but not central to achieving the energy consumption objective of the N3-X/TeDP. A key parameter in the efficiency of superconducting motors and generators is the size of the superconducting filaments in the stator. The size of the superconducting filaments in the baseline model is assumed to be 10 microns. A 40 micron filament, which represents current technology, results in a 200% increase in AC losses in the motor and generator stators. This analysis shows that for a system with 40 micron filaments the higher stator losses plus the added weight and power of larger cryocoolers results in a 4% increase in mission energy consumption. If liquid hydrogen is used to cool the superconductors the 40 micron fibers results in a 200% increase in hydrogen required for cooling. Each pound of hydrogen used as fuel displaces 3 pounds of jet fuel. For the N3-X on the reference mission the additional hydrogen due to the increase stator losses reduces the total fuel weight 10%. The lighter fuel load and attendant vehicle resizing reduces the total energy consumption more than the higher stator losses increase it. As a result with hydrogen cooling there is a slight reduction in mission energy consumption with increasing stator losses. This counter intuitive result highlights the need to consider the full system impact of changes rather than just at the component or subsystem level

    Differential Responses of S100A2 to Oxidative Stress and Increased Intracellular Calcium in Normal, Immortalized, and Malignant Human Keratinocytes

    Get PDF
    S100A2 is a calmodulin-like, p53-inducible, homodimeric protein that is readily oxidized in keratinocytes subjected to oxidative stress. Here we compare the redox status and subcellular distribution of S100A2 in normal human keratinocytes, immortalized keratinocytes (HaCaT), and malignant keratinocytes (A431) as a function of oxidative stress and intracellular Ca2+ levels. Normal human keratinocytes displayed strong nuclear and moderate cytoplasmic S100A2 immunoreactivity. HaCaT and A431 cells, which lack normal p53, expressed S100A2 in similar patterns but in 4- to 8-fold lower amounts. H2O2 treatment of normal human keratinocytes caused a reduction of nuclear S100A2 staining accompanied by an increase in cytoplasmic S100A2 staining, with a delayed time course (0.5–1 h) relative to S100A2 oxidative crosslinking (15 min). This phenomenon, consistent with translocation of S100A2 from the nucleus to the cytoplasm, could also be induced in normal human keratinocytes by increasing intracellular Ca2+ levels with the ionophore A23187. Sulfhydryl reducing agents blocked these changes, whether induced by H2O2 or increased intracellular Ca2+ levels. A temporal correlation was identified between S100A2 translocation at 1 h and loss of cell viability at 24 h after H2O2 treatment. A431 and HaCaT cells were strongly resistant to H2O2-induced S100A2 crosslinking, S100A2 translocation, and cell death. Increased intracellular Ca2+ levels caused prominent translocation of S100A2 in normal human keratinocytes and HaCaT, but not in A431 cells. These results identify S100A2 oxidation and translocation as markers for early cellular responses to oxidative stress, which are markedly attenuated in immortalized and malignant keratinocytes

    The Submillimeter Array

    Full text link
    The Submillimeter Array (SMA), a collaborative project of the Smithsonian Astrophysical Observatory (SAO) and the Academia Sinica Institute of Astronomy and Astrophysics (ASIAA), has begun operation on Mauna Kea in Hawaii. A total of eight 6-m telescopes comprise the array, which will cover the frequency range of 180-900 GHz. All eight telescopes have been deployed and are operational. First scientific results utilizing the three receiver bands at 230, 345, and 690 GHz have been obtained and are presented in the accompanying papers.Comment: 10 pages, 4 figure

    An iterative method for reference pattern selection in high-resolution electron backscatter diffraction (HR-EBSD)

    Get PDF
    For high (angular) resolution electron backscatter diffraction (HR-EBSD), the selection of a reference diffraction pattern (EBSP0) significantly affects the precision of the calculated strain and rotation maps. This effect was demonstrated in plastically deformed body-centred cubic and face-centred cubic ductile metals (ferrite and austenite grains in duplex stainless steel) and brittle single-crystal silicon, which showed that the effect is not only limited to measurement magnitude but also spatial distribution. An empirical relationship was then identified between the cross-correlation parameter and angular error, which was used in an iterative algorithm to identify the optimal reference pattern that maximises the precision of HR-EBSD

    When do analysts adjust for biases in management guidance? Effects of guidance track record and analysts' incentives

    Get PDF
    Prior research indicates that analysts do not fully adjust for the general downward bias in earnings guidance issued by management. We report the results of two experiments designed to investigate how guidance track record and analysts incentives jointly explain the extent to which analysts adjust for guidance bias. Our results suggest that analysts with accuracy incentives adjust for managements track record of downwardly biased guidance when the bias is relatively small (one cent), but those with relationship incentives do not. Furthermore, the difference in adjustment is larger when the bias track record is inconsistent than when it is consistent. Also, when guidance bias is larger (two cents) relative to smaller (one cent), analysts with relationship incentives partially adjust, as they appear to strike a balance between accuracy and their desire to please management. These findings hold implications for investors, regulators, and the interpretation of prior research

    Revolutionary Aeropropulsion Concept for Sustainable Aviation: Turboelectric Distributed Propulsion

    Get PDF
    In response to growing aviation demands and concerns about the environment and energy usage, a team at NASA proposed and examined a revolutionary aeropropulsion concept, a turboelectric distributed propulsion system, which employs multiple electric motor-driven propulsors that are distributed on a large transport vehicle. The power to drive these electric propulsors is generated by separately located gas-turbine-driven electric generators on the airframe. This arrangement enables the use of many small-distributed propulsors, allowing a very high effective bypass ratio, while retaining the superior efficiency of large core engines, which are physically separated but connected to the propulsors through electric power lines. Because of the physical separation of propulsors from power generating devices, a new class of vehicles with unprecedented performance employing such revolutionary propulsion system is possible in vehicle design. One such vehicle currently being investigated by NASA is called the "N3-X" that uses a hybrid-wing-body for an airframe and superconducting generators, motors, and transmission lines for its propulsion system. On the N3-X these new degrees of design freedom are used (1) to place two large turboshaft engines driving generators in freestream conditions to minimize total pressure losses and (2) to embed a broad continuous array of 14 motor-driven fans on the upper surface of the aircraft near the trailing edge of the hybrid-wing-body airframe to maximize propulsive efficiency by ingesting thick airframe boundary layer flow. Through a system analysis in engine cycle and weight estimation, it was determined that the N3-X would be able to achieve a reduction of 70% or 72% (depending on the cooling system) in energy usage relative to the reference aircraft, a Boeing 777-200LR. Since the high-power electric system is used in its propulsion system, a study of the electric power distribution system was performed to identify critical dynamic and safety issues. This paper presents some of the features and issues associated with the turboelectric distributed propulsion system and summarizes the recent study results, including the high electric power distribution, in the analysis of the N3-X vehicle

    Refining the shallow slip deficit

    Get PDF
    Geodetic slip inversions for three major (M_w > 7) strike-slip earthquakes (1992 Landers, 1999 Hector Mine and 2010 El Mayor–Cucapah) show a 15–60 per cent reduction in slip near the surface (depth < 2 km) relative to the slip at deeper depths (4–6 km). This significant difference between surface coseismic slip and slip at depth has been termed the shallow slip deficit (SSD). The large magnitude of this deficit has been an enigma since it cannot be explained by shallow creep during the interseismic period or by triggered slip from nearby earthquakes. One potential explanation for the SSD is that the previous geodetic inversions lack data coverage close to surface rupture such that the shallow portions of the slip models are poorly resolved and generally underestimated. In this study, we improve the static coseismic slip inversion for these three earthquakes, especially at shallow depths, by: (1) including data capturing the near-fault deformation from optical imagery and SAR azimuth offsets; (2) refining the interferometric synthetic aperture radar processing with non-boxcar phase filtering, model-dependent range corrections, more complete phase unwrapping by SNAPHU (Statistical Non-linear Approach for Phase Unwrapping) assuming a maximum discontinuity and an on-fault correlation mask; (3) using more detailed, geologically constrained fault geometries and (4) incorporating additional campaign global positioning system (GPS) data. The refined slip models result in much smaller SSDs of 3–19 per cent. We suspect that the remaining minor SSD for these earthquakes likely reflects a combination of our elastic model's inability to fully account for near-surface deformation, which will render our estimates of shallow slip minima, and potentially small amounts of interseismic fault creep or triggered slip, which could ‘make up’ a small percentages of the coseismic SSD during the interseismic period. Our results indicate that it is imperative that slip inversions include accurate measurements of near-fault surface deformation to reliably constrain spatial patterns of slip during major strike-slip earthquakes

    Effects of partially dismantling the CD4 binding site glycan fence of HIV-1 envelope glycoprotein trimers on neutralizing antibody induction

    Get PDF
    Previously, VLPs bearing JR-FL strain HIV-1 Envelope trimers elicited potent neutralizing antibodies (nAbs) in 2/8 rabbits PLoS Pathog 11(5): e1004932) by taking advantage of a naturally absent glycan at position 197 that borders the CD4 binding site (CD4bs). In new immunizations, we attempted to improve nAb responses by removing the N362 glycan that also lines the CD4bs. All 4 rabbits developed nAbs. One targeted the N197 glycan hole like our previous sera. Two sera depended on the N463 glycan, again suggesting CD4bs overlap. Heterologous boosts appeared to reduce nAb clashes with the N362 glycan. The fourth serum targeted a N362 glycan-sensitive epitope. VLP manufacture challenges prevented us from immunizing larger rabbit numbers to empower a robust statistical analysis. Nevertheless, trends suggest that targeted glycan removal may improve nAb induction by exposing new epitopes and that it may be possible to modify nAb speciUcity using rational heterologous boosts
    corecore